Estimation des incertitudes - Cours et applications en langage Python
Estimation des incertitudes - Cours et applications en langage Python
Publié par Ellipses, le 17 mars 2020
144 pages
Résumé
L'ouvrage : niveau C (Master - Ecoles d'ingénieurs - Recherche). Pour aider à la compréhension des techniques d'estimation des incertitudes, l'ouvrage fait un point sur l'ensemble des méthodes. Il analyse leurs avantages et faiblesses respectifs avec des exemples simples. L'ouvrage est divisé en deux parties distinctes. Après un historique de l'estimation des incertitudes dans un avant-propos, la première partie porte sur les méthodes basées sur la dérivée et la statistique descriptive. Sont décrits les éléments de statistique descriptive nécessaires, la méthode classique du GUM (Guide of Unercertainty in Measurements), les méthodes basées sur l'inférence bayésienne et les corrélations entre les données expérimentales. La seconde partie développe les méthodes stochastiques. Sont décrits la propagation des incertitudes par la méthode de Monte-Carlo, l'analyse de sensibilité aux grandeurs d'entrée, la méthode de chaos polynomial et le couplage de ces méthodes avec l'inférence bayésienne. Le dernier chapitre traite de la propagation des incertitudes dans un code de calcul. Des exemples variés sont traités en langage Python. Ils permettent d'appliquer et de comparer les méthodes. Les corrections des exercices proposés sont disponibles sur le site de l'éditeur.
Plus de livres de Gérard Baudin
Voir plusFrédéric Mistral - Illustre et méconnu
Banlieues a problemes
Faire territoire
Critiques
Ce livre n'a pas encore de critiques
Vous avez lu ce livre ? Dites à la communauté Lenndi ce que vous en avez pensé 😎