Arpenter l'infini ; une histoire des mathématiques
Algebraic Number Theory and Fermat's Last Theorem
Publié par Taylor & Francis, le 01 octobre 2015
322 pages
Résumé
Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics-the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Readers will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fourth Edition : Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z(V14) is Euclidean ; Presents an important new result : Mihailescu's proof of the Catalan conjecture of 1844 ; Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem ; Improves and updates the index, figures, bibliography, further reading list, and historical remarks. Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach readers how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.
Plus de livres de Ian Stewart
Voir plusOh ! catastrophe
La Chasse aux trésors mathématiques
Dieu joue-t-il aux dés ? - Les nouvelles mathématiques du chaos
The science of discworld Tome 2 ; the globe
La chasse aux trésors mathématiques
17 équations qui ont changé le monde
La science du Disque-monde Tome 1
Critiques
Ce livre n'a pas encore de critiques
Vous avez lu ce livre ? Dites à la communauté Lenndi ce que vous en avez pensé 😎